
Proceedings of the EMNLP 2014 Workshop on Arabic Natural Langauge Processing (ANLP), pages 148–154,
October 25, 2014, Doha, Qatar. c�2014 Association for Computational Linguistics

GWU-HASP: Hybrid Arabic Spelling and Punctuation Corrector1

 Mohammed Attia, Mohamed Al-Badrashiny, Mona Diab

Department of Computer Science
The George Washington University

{Mohattia;badrashiny;mtdiab}@gwu.edu

Abstract

In this paper, we describe our Hybrid Ar-
abic Spelling and Punctuation Corrector
(HASP). HASP was one of the systems
participating in the QALB-2014 Shared
Task on Arabic Error Correction. The
system uses a CRF (Conditional Random
Fields) classifier for correcting punctua-
tion errors, an open-source dictionary (or
word list) for detecting errors and gener-
ating and filtering candidates, an n-gram
language model for selecting the best
candidates, and a set of deterministic
rules for text normalization (such as re-
moving diacritics and kashida and con-
verting Hindi numbers into Arabic nu-
merals). We also experiment with word
alignment for spelling correction at the
character level and report some prelimi-
nary results.

1 Introduction

In this paper1 we describe our system for Arabic
spelling error detection and correction, Hybrid
Arabic Spelling and Punctuation Corrector
(HASP). We participate with HASP in the
QALB-2014 Shared Task on Arabic Error Cor-
rection (Mohit et al., 2014) as part of the Arabic
Natural Language Processing Workshop (ANLP)
taking place at EMNLP 2014.
 The shared task data deals with “errors” in the
general sense which comprise: a) punctuation
errors; b) non-word errors; c) real-word spelling
errors; d) grammatical errors; and, e) orthograph-
ical errors such as elongation (kashida) and
speech effects such as character multiplication

1 This work was supported by the Defense Advanced
Research Projects Agency (DARPA) Contract No.
HR0011-12-C-0014, BOLT program with subcontract
from Raytheon BBN.

for emphasis. HASP in its current stage only
handles types (a), (b), and (e) errors. We assume
that the various error types are too distinct to be
treated with the same computational technique.
Therefore, we treat each problem separately, and
for each problem we select the approach that
seems most efficient, and ultimately all compo-
nents are integrated in a single framework.

1.1 Previous Work

Detecting spelling errors in typing is one of the
earliest NLP applications, and it has been re-
searched extensively over the years, particularly
for English (Damerau, 1964; Church and Gale,
1991; Kukich, 1992; Brill and Moore, 2000; Van
Delden et al., 2004; Golding, 1995; Golding and
Roth, 1996; Fossati and Di Eugenio, 2007; Islam
in Inkpen, 2009; Han and Baldwin, 2011; Wu et
al., 2013).

The problem of Arabic spelling error correc-
tion has been investigated in a number of papers
(Haddad and Yaseen, 2007; Alfaifi and Atwell,
2012; Hassan et al., 2008; Shaalan et al., 2012;
Attia et al., 2012; Alkanhal et al., 2012).

 In our research, we address the spelling error
detection and correction problem with a focus on
non-word errors. Our work is different from pre-
vious work on Arabic in that we cover punctua-
tion errors as well. Furthermore, we fine-tune a
Language Model (LM) disambiguator by adding
probability scores for candidates using forward-
backward tracking, which yielded better results
than the default Viterbi. We also develop a new
and more efficient splitting algorithm for merged
words.

1.2 Arabic Morphology, Orthography and
Punctuation

Arabic has a rich and complex morphology as it
applies both concatenative and non-
concatenative morphotactics (Ratcliffe, 1998;
Beesley, 1998; Habash, 2010), yielding a wealth
of morphemes that express various morpho-

148

syntactic features, such as tense, person, number,
gender, voice and mood.
 Arabic has a large array of orthographic varia-
tions, leading to what is called ‘typographic er-
rors’ or ‘orthographic variations’ (Buckwalter,
2004a), and sometimes referred to as sub-
standard spellings, or spelling soft errors. These
errors are basically related to the possible over-
lap between orthographically similar letters in
three categories: a) the various shapes of ham-
zahs (! A2, ! >, ! <, ! |, ! }, ء ', ! &); b) taa mar-
boutah and haa ! p, ! h); and c) yaa and alif
maqsoura (! y, ! Y).
 Ancient Arabic manuscripts were written in
scriptura continua, meaning running words
without punctuation marks. Punctuation marks
were introduced to Arabic mainly through bor-
rowing from European languages via translation
(Alqinai, 2013). Although punctuation marks in
Arabic are gaining popularity and writers are
becoming more aware of their importance, yet
many writers still do not follow punctuation con-
ventions as strictly and consistently as English
writers. For example, we investigated contempo-
raneous same sized tokenized (simple tokeniza-
tion with separation of punctuation) English and
Modern Standard Arabic Gigaword edited
newswire corpora, we found that 10% of the to-
kens in the English Gigaword corresponded to
punctuation marks, compared to only 3% of the
tokens in the Arabic counterpart.

 Train. % Dev. %
Word Count 925,643 -- 48,471 --
Total Errors 306,757 33.14 16,659 34.37
Word errors 187,040 60.97 9,878 59.30
Punc. errors 618,886 39.03 6,781 40.70
Split 10,869 3.48 612 3.67
Add_before 99,258 32.36 5,704 34.24
Delete 6,778 2.21 338 2.03
Edit 169,769 55.34 8,914 53.51
Merge 18,267 5.95 994 5.97
Add_after 20 0.01 2 0.01
Move 427 0.14 13 0.08

Table 1. Distribution Statistics on Error Types

1.3 Data Analysis

In our work, we use the QALB corpus (Zag-
houani et al. 2014), and the training and devel-
opment set provided in the QALB shared task
(Mohit et. al 2014). The shared task addresses a
large array of errors, and not just typical spelling

2 In this paper, we use the Buckwalter Transliteration
Scheme as described in www.qamus.com.

errors. For instance, as Table 1 illustrates punc-
tuation errors make up to 40% of all the errors in
the shared task.

For further investigation, we annotated 1,100
words from the development set for error types,
and found that 85% of the word errors (excluding
punctuation marks) are typical spelling errors (or
non-word errors), while 15% are real-word er-
rors, or lexical ambiguities (that is, they are valid
words outside of their context), and they range
between dialectal words, grammatical errors,
semantic errors, speech effects and elongation,
examples shown in Table 2.

Error Type Example Correction
dialectal
words

bhAy !ب#ا
‘by this’ [Syrian]

bh*h !ب#ذ
‘by this’ [MSA]

grammatical
errors

kbyr كب"ر
‘big.masc’

kbyrp !كب#ر
‘big.fem’

semantic
errors

|tyh !"ت$
‘come to him’

|typ ت"ة$
‘coming’

speech
effects

"لرجا"""!
 AlrjAAAAl ‘men’

&لرجا!
AlrjAl ‘men’

elongation dm__A' مـاء%
‘blood’

dmA' ماء$
‘blood’

Table 2. Examples of real word errors

2 Our Methodology

Due to the complexity and variability of errors in
the shared task, we treat each problem individu-
ally and use different approaches that prove to be
most appropriate for each problem. We specifi-
cally address three subtypes of errors: ortho-
graphical errors; punctuation errors; and non-
word errors.

2.1 Orthographical Errors

There are many instances in the shared task’s
data that can be treated using simple and straight-
forward conversion via regular expression re-
place rules. We estimate that these instances
cover 10% of the non-punctuation errors in the
development set. In HASP we use deterministic
heuristic rules to normalize the text, including
the following:
1. Hindi numbers (!"#$٤٥٦()*) are converted

into Arabic numerals [0-9] (occurs 495 in the
training data times);

2. Speech effects are removed. For example,
 &لرجا! AlrjAAAAl ‘men’ is converted to "لرجا"""!
AlrjAl. As a general rule letters repeated three
times or more are reduced to one letter (715
times);

3. Elongation or kashida is removed. For ex-
ample, مــاء% dm__A' ‘blood’ is converted to

149

 ;dmA' (906 times) $ماء
4. Special character U+06CC, the Farsi yeh: !

is converted to U+0649, the visually similar
Arabic alif maqsoura ! Y (293 times).

2.2 Punctuation Errors

Punctuation errors constitute 40% of the errors in
the QALB Arabic data. It is worth noting that by
comparison, punctuation errors only constituted
4% of the English data in CoNLL 2013 Shared
Task on English Grammatical Error Correction
(Ng et al., 2013) and were not evaluated or han-
dled by any participant. In HASP, we focus on 6
punctuation marks: comma, colon, semi-colon,
exclamation mark, question mark and period.

The ‘column’ file in the QALB shared task da-
ta comes preprocessed with the MADAMIRA
morphological analyzer version 04092014-1.0-
beta (Pasha et al., 2014). The features that we
utilize in our punctuation classification experi-
ments are all extracted from the ‘column’ file,
and they are as follows:
(1) The original word, that is the word as it ap-

pears in the text without any further pro-
cessing, (e.g., !"للتشا llt$Awr ‘for consulting’);

(2) The tokenized word using the Penn Arabic
Treebank (PATB) tokenization (e.g., !+
 ;(l+Alt$Awr 'لتشا"!

(3) Kulick POS tag (e.g., IN+DT+NN).
(4) Buckwalter POS tag (e.g., PREP+DET+

NOUN+CASE_DEF_GN) as produced by
MADAMIRA;

(5) Classes to be predicted: colon_after, com-
ma_after, exclmark_after, period_after,
qmark_after, semicolon_after and NA (when
no punctuation marks are used);

Window
Size

Recall Precision F-measure

4 36.24 54.09 43.40
5 37.95 59.61 46.37
6 36.65 59.99 45.50
7 34.50 59.53 43.68

Table 3. Yamcha results on the development set

 For classification, we experiment with Sup-
port Vector Machines (SVM) as implemented in
Yamcha (Kudo and Matsumoto, 2003) and Con-
ditional Random Field (CRF++) classifiers (Laf-
ferty et al. 2001). In our investigation, we vary
the context window size from 4 to 8 and we use
all 5 features listed for every word in the win-
dow. As Tables 3 and 4 show, we found that
window size 5 gives the best f-score by both
Yamcha and CRF. When we strip clitics from

tokenized tag, reducing it to stems only, the per-
formance of the system improved. Overall CRF
yields significantly higher results using the same
experimental setup. We assume that the perfor-
mance advantage of CRF is a result of the way
words in the context and their features are inter-
connected in a neat grid in the template file.

Window

Size
Recall Precision f-measure

1 4 44.03 74.33 55.31
2 5 44.50 75.49 55.99
3 6 44.22 74.93 55.62
4 7 43.81 75.09 55.34
5 8 43.49 75.41 55.17
6 8* 43.31 75.37 55.00
Table 4. CRF results on the development set
* with full tokens; other experiments use stems
only, i.e., clitics are removed.

2.3. Non Word Errors

This type of errors comprises different subtypes:
merges where two or more words are merged
together; splits where a space is inserted within a
single word; or misspelled words (which under-
went substitution, deletion, insertion or transpo-
sition) that should be corrected. We handle these
problems as follows.

2.3.1. Word Merges

Merged words are when the space(s) between
two or more words is deleted, such as !ذ&&لنظا(
h*AAlnZAm ‘this system’, which should be !ذ#
 h*A AlnZAm. They constitute 3.67% and &لنظا!
3.48% of the error types in the shared task’s de-
velopment and training data, respectively. Attia
et al. (2012) used an algorithm for dealing with
merged words in Arabic, that is, ! − 3, where l is
the length of a word. For a 7-letter word, their
algorithm generates 4 candidates as it allows on-
ly a single space to be inserted in a string. Their
algorithm, however, is too restricted. By contrast
Alkanhal et al. (2012) developed an algorithm
with more generative power, that is 2!!!. Their
algorithm, however, is in practice too general
and leads to a huge fan out. For a 7-letter word, it
generates 64 solutions. We develop a splitting
algorithm by taking into account that the mini-
mum length of words in Arabic is two. Our mod-
ified algorithm is 2!!!, which creates an effec-
tive balance between comprehensiveness and
compactness. For the 7-letter word, it generates 8
candidates. However, from Table 5 on merged
words and their gold splits, one would question

150

the feasibility of producing more than two splits
for any given string. Our splitting algorithm is
evaluated in 2.3.3.1.c and compared to Attia et
al.’s (2012) algorithm.

 Development Training
Total Count 631 11,054

1 split 611 10,575
2 splits 15 404
3 splits 3 57
4 splits 1 13
5 splits 1 5

Table 5. Merged words and their splits

2.3.2. Word Splits

Beside the problem of merged words, there is
also the problem of split words, where one or
more spaces are inserted within a word, such as
 .(SmAm صما! correction is) ’Sm Am ‘valve صم "!
This error constitutes 6% of the shared task’s
both training and development set. We found that
the vast majority of instances of this type of error
involve the clitic conjunction waw “and”, which
should be represented as a word prefix. Among
the 18,267 splits in the training data 15,548 of
them involved the waw, corresponding to
85.12%. Similarly among the 994 splits in the
development data, 760 of them involved the waw
(76.46%).
 Therefore, we opted to handle this problem in
our work in a partial and shallow manner using
deterministic rules addressing specifically the
following two phenomena:
1. Separated conjunction morpheme waw ! w

‘and’ is attached to the succeeding word (oc-
curs 15,915 times in the training data);

2. Literal strings attached to numbers are sepa-
rated with space(s). For example,
 dmA'2000$hydF” ‘blood of“ ”ش$#د!2000$ماء“
2000 martyrs’ is converted to “ش$#د! 2000 $ماء”
“dmA' 2000 $hydF” (824 times).

2.3.3. Misspelled Word Errors

This is more akin to the typical spelling correc-
tion problem where a word has the wrong letters,
rendering it a non-word. We address this prob-
lem using two approaches: Dictionary-LM Cor-
rection, and Alignment Based Correction.

2.3.3.1. Dictionary-LM Correction

Spelling error detection and correction mainly
consists of three phases: a) error detection; b)
candidate generation; and c) error correction, or
best candidate selection.

a. Error Detection
For non-word spelling error detection and candi-
date generation we use AraComLex Extended,
an open-source reference dictionary (or word
list) of full-form words. The dictionary is devel-
oped by Attia et al. (2012) through an amalgama-
tion of various resources, such as a wordlist from
the Arabic Gigaword corpus, wordlist generated
from the Buckwalter morphological analyzer,
and AraComLex (Attia et al., 2011), a finite-state
morphological transducer. AraComLex Extended
consists of 9.2M words and, as far as we know,
is the largest wordlist for Arabic reported in the
literature to date.

We enhance the AraComLex Extended dic-
tionary by utilizing the annotated data in the
shared task’s training data. We add 776 new val-
id words to the dictionary and remove 4,810 mis-
spelt words, leading to significant improvement
in the dictionary’s ability to make decisions on
words. Table 6 shows the dictionary’s perfor-
mance on the training and development set in the
shared task as applied only to non-words and
excluding grammatical, semantic and punctua-
tion errors.

data set R P F
Training 98.84 96.34 97.57
Development 98.72 96.04 97.36

Table 6. Results of dictionary error detection

b. Candidate Generation
For candidate generation we use Foma (Hulden,
2009), a finite state compiler that is capable of
producing candidates from a wordlist (compiled
as an FST network) within a certain edit distance
from an error word. Foma allows the ranking of
candidates according to customizable transfor-
mation rules.

Error Type Count Ratio %

1. ! > typed as ! A 59,507 31.82
2. Insert 28.945 15.48
3. ! < typed as ! A 25.392 13.58
4. Delete 18.246 9.76
5. ! p typed as ! h 14.639 7.83
6. Split 11.419 6.11
7. ! y typed as ! Y 6.419 3.43

Table 7. Error types in the training set

We develop a re-ranker based on our observa-
tion of the error types in the shared task’s train-
ing data (as shown in Table 7) and examining the
character transformations between the misspelt
words and their gold corrections. Our statistics

151

shows that soft errors (or variants as explained in
Section 1.2) account for more than 62% of all
errors in the training data.

c. Error Correction
For error correction, namely selecting the best
solution among the list of candidates, we use an
n-gram language model (LM), as implemented in
the SRILM package (Stolcke et al., 2011). We
use the ‘disambig’ tool for selecting candidates
from a map file where erroneous words are pro-
vided with a list of possible corrections. We also
use the ‘ngram’ utility in post-processing for de-
ciding on whether a split-word solution has a
better probability than a single word solution.
Our bigram language model is trained on the Gi-
gaword Corpus 4th edition (Parker et al., 2009).
 For the LM disambiguation we use the ‘–fb’
option (forward-backward tracking), and we pro-
vide candidates with probability scores. We gen-
erate these probability scores by converting the
edit distance scores produced by the Foma FST
re-ranker explained above. Both of the forward-
backward tracking and the probability scores in
in tandem yield better results than the default
values. We evaluate the performance of our sys-
tem against the gold standard using the Max-
Match (M2) method for evaluating grammatical
error correction by Dahlmeier and Ng (2012).
 The best f-score achieved in our system is ob-
tained when we combine the CRF punctuation
classifier (merged with the original punctuations
found in data), knowledge-based normalization
(norm), dictionary-LM disambiguation and split-
1, as shown in Table 8. The option split-1 refers
to using the splitting algorithm ! − 3 as ex-
plained in Section 2.3.1, while split-2 refers to
using the splitting algorithm 2!!!.

Experiment R P F
1 LM+split-1 33.32 73.71 45.89

2 +CRF_punc+split-1 49.74 65.38 56.50

3 + norm+split-1 38.81 69.08 49.70

4 +CRF_punc+norm
+split-1 54.79 67.65 60.55

5 +CRF_punc+norm
+orig_punc+split-1 53.18 73.15 61.59

6 +CRF_punc+norm
+orig_punc+split-2 53.13 73.01 61.50

Table 8. LM correction with 3 candidates

 In the QALB Shared Task evaluation, we
submit two systems: System 1 is configuration 5
in Table 8, and System 2 corresponds to configu-
ration 6, and the results on the test set are shown

in Table 9. As Table 9 shows, the best scores are
obtained by System 1, which is ranked 5th among
the 9 systems participating in the shared task.

Experiment R P F

1 System 1 52.98 75.47 62.25

2 System 2 52.99 75.34 62.22
Table 9. Final official results on the test set pro-
vided by the Shared Task

2.3.3.2. Alignment-Based Correction

We formatted the data for alignment using a
window of 4 words: one word to each side
(forming the contextual boundary) and two
words in the middle. The two words in the mid-
dle are split into characters so that character
transformations can be observed and learned by
the aligner. The alignment tool we use is Giza++
(Och and Ney, 2003). Results are reported in Ta-
ble 10.
!

Experiment R P F

1 for all error types 36.05 45.13 37.99

2 excluding punc 32.37 54.65 40.66

3 2 + CRF_punc+norm 46.11 62.02 52.90
Table 10. Results of character-based alignment
!

Although these preliminary results from Align-
ment are significantly below results yielded from
the Dictionary-LM approach, we believe that
there are several potential improvements that
need to be explored:
• Using LM on the output of the alignment;
• Determining the type of errors that the

alignment is most successful at handling:
punctuation, grammar, non-words, etc;

• Parsing training data errors with the Diction-
ary-LM disambiguation and retraining, so in-
stead of training data consisting of errors and
gold corrections, it will consist of corrected
errors and gold corrections.

3 Conclusion

We have described our system HASP for the au-
tomatic correction of spelling and punctuation
mistakes in Arabic. To our knowledge, this is the
first system to handle punctuation errors. We
utilize and improve on an open-source full-form
dictionary, introduce better algorithm for hand-
ing merged word errors, tune the LM parameters,
and combine the various components together,
leading to cumulative improved results.

152

References
Alfaifi, A., and Atwell, E. (2012) Arabic Learner

Corpora (ALC): a taxonomy of coding errors. In
Proceedings of the 8th International Computing
Conference in Arabic (ICCA 2012), Cairo, Egypt.

Alkanhal, Mohamed I., Mohamed A. Al-Badrashiny,
Mansour M. Alghamdi, and Abdulaziz O. Al-
Qabbany. (2012) Automatic Stochastic Arabic
Spelling Correction With Emphasis on Space In-
sertions and Deletions. IEEE Transactions on Au-
dio, Speech, and Language Processing, Vol. 20,
No. 7, September 2012.

Alqinai, Jamal. (2013) Mediating punctuation in Eng-
lish Arabic translation. Linguistica Atlantica. Vol.
32.

Attia, M., Pecina, P., Tounsi, L., Toral, A., and van
Genabith, J. (2011) An Open-Source Finite State
Morphological Transducer for Modern Standard
Arabic. International Workshop on Finite State
Methods and Natural Language Processing
(FSMNLP). Blois, France.

Attia, Mohammed, Pavel Pecina, Younes Samih,
Khaled Shaalan, Josef van Genabith. 2012. Im-
proved Spelling Error Detection and Correction for
Arabic. COLING 2012, Bumbai, India.

Beesley, Kenneth R. (1998). Arabic Morphology Us-
ing Only Finite-State Operations. In The Workshop
on Computational Approaches to Semitic lan-
guages, Montreal, Quebec, pp. 50–57.

Ben Othmane Zribi, C. and Ben Ahmed, M. (2003)
Efficient Automatic Correction of Misspelled Ara-
bic Words Based on Contextual Information, Lec-
ture Notes in Computer Science, Springer, Vol.
2773, pp.770–777.

Brill, Eric and Moore, Robert C. (2000) An improved
error model for noisy channel spelling correction.
Proceedings of the 38th Annual Meeting of the As-
sociation for Computational Linguistics, Hong
Kong, pp. 286–293.

Brown, P. F., Della Pietra, V. J., de Souza, P. V., Lai,
J. C. and Mercer, R. L. (1992) Class-Based n-gram
Models of Natural Language. Computational Lin-
guistics, 18(4), 467–479.

Buckwalter, T. (2004b) Buckwalter Arabic Morpho-
logical Analyzer (BAMA) Version 2.0. Linguistic
Data Consortium (LDC) catalogue number:
LDC2004L02, ISBN1-58563-324-0.

Buckwalter, Tim. (2004a) Issues in Arabic orthogra-
phy and morphology analysis. Proceedings of the
Workshop on Computational Approaches to Arabic
Script-based Languages. Pages 31-34. Association
for Computational Linguistics Stroudsburg, PA,
USA.

Church, Kenneth W. and William A. Gale. (1991)
Probability scoring for spelling correction. Statis-
tics and Computing, 1, pp. 93–103.

Dahlmeier, Daniel and Ng, Hwee Tou. 2012. Better
evaluation for grammatical error correction. In
Proceedings of NAACL.

Damerau, Fred J. (1964) A Technique for Computer
Detection and Correction of Spelling Errors.
Communications of the ACM, Volum 7, issue 3,
pp. 171–176.

Gao, Jianfeng, Xiaolong Li, Daniel Micol, Chris
Quirk, and Xu Sun. (2010) A large scale ranker-
based system for search query spelling correction.
Proceedings of the 23rd International Conference
on Computational Linguistics (COLING 2010),
pages 358–366, Beijing, China

Golding, Andrew R. A Bayesian Hybrid Method for
Context-sensitive Spelling Correction. In Proceed-
ings of the Third Workshop on Very Large Corpo-
ra. MIT, Cambridge, Massachusetts, USA. 1995,
pp.39–53.

Golding, Andrew R., and Dan Roth. (1996) Applying
Winnow to Context-Sensitive Spelling Correction.
In Proceedings of the Thirteenth International Con-
ference on Machine Learning, Stroudsburg, PA,
USA, pp. 182–190

Habash, Nizar Y. (2010) Introduction to Arabic Natu-
ral Language Processing. Synthesis Lectures on
Human Language Technologies 3.1: 1-187.

Haddad, B., and Yaseen, M. (2007) Detection and
Correction of Non-Words in Arabic: A Hybrid Ap-
proach. International Journal of Computer Pro-
cessing of Oriental Languages. Vol. 20, No. 4.

Han, Bo and Timothy Baldwin. (2011) Lexical Nor-
malisation of Short Text Messages: Makn Sens a
#twitter. Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics,
pages 368–378, Portland, Oregon, June 19-24,
2011

Hassan, A, Noeman, S., and Hassan, H. (2008) Lan-
guage Independent Text Correction using Finite
State Automata. IJCNLP. Hyderabad, India.

Hulden, M. (2009) Foma: a Finite-state compiler and
library. EACL '09 Proceedings of the 12th Confer-
ence of the European Chapter of the Association
for Computational Linguistics. Association for
Computational Linguistics Stroudsburg, PA, USA

Islam, Aminul, Diana Inkpen. (2009) Real-Word
Spelling Correction using Google Web 1T n-gram
with Backoff. International Conference on Natural
Language Processing and Knowledge Engineering,
Dalian, China, pp. 1–8.

153

Kiraz, G. A. (2001) Computational Nonlinear Mor-
phology: With Emphasis on Semitic Languages.
Cambridge University Press.

Kudo, Taku, Yuji Matsumoto. (2003) Fast Methods
for Kernel-Based Text Analysis. 41st Annual
Meeting of the Association for Computational Lin-
guistics (ACL-2003), Sapporo, Japan.

Kukich, Karen. (1992) Techniques for automatically
correcting words in text. Computing Surveys,
24(4), pp. 377–439.

Lafferty, John, Andrew McCallum, and Fernando
Pereira. (2001) Conditional random fields: Proba-
bilistic models for segmenting and labeling se-
quence data, In Proceedings of the International
Conference on Machine Learning (ICML 2001), ,
MA, USA, pp. 282-289.

Levenshtein, V. I. (1966) Binary codes capable of
correcting deletions, insertions, and reversals. In:
Soviet Physics Doklady, pp. 707-710.

Magdy, W., and Darwish, K. (2006) Arabic OCR er-
ror correction using character segment correction,
language modeling, and shallow morphology.
EMNLP '06 Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Pro-
cessing.

Mohit, Behrang, Alla Rozovskaya, Nizar Habash,
Wajdi Zaghouani, and Ossama Obeid, 2014. The
First QALB Shared Task on Automatic Text Cor-
rection for Arabic. In Proceedings of EMNLP
workshop on Arabic Natural Language Processing.
Doha, Qatar.

Ng, Hwee Tou, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. (2013) The
CoNLL-2013 Shared Task on Grammatical Error
Correction. Proceedings of the Seventeenth Con-
ference on Computational Natural Language
Learning: Shared Task, pages 1–12, Sofia, Bulgar-
ia, August 8-9 2013.

Norvig, P. (2009) Natural language corpus data. In
Beautiful Data, edited by Toby Segaran and Jeff
Hammerbacher, pp. 219-�-242. Sebastopol, Ca-
lif.: O'Reilly.

Och, Franz Josef, Hermann Ney. (2003) A Systematic
Comparison of Various Statistical Alignment
Models. In Computational Linguistics, volume 29,
number 1, pp. 19-51 March 2003.

Parker, R., Graff, D., Chen, K., Kong, J., and Maeda,
K. (2009) Arabic Gigaword Fifth Edition. LDC
Catalog No.: LDC2009T30, ISBN: 1-58563-532-4.

Parker, R., Graff, D., Chen, K., Kong, J., and Maeda,
K. (2011) Arabic Gigaword Fifth Edition. LDC
Catalog No.: LDC2011T11, ISBN: 1-58563-595-2.

Pasha, Arfath, Mohamed Al-Badrashiny, Ahmed El
Kholy, Ramy Eskander, Mona Diab, Nizar Habash,

Manoj Pooleery, Owen Rambow, Ryan Roth.
(2014) Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of Ar-
abic. In Proceedings of the 9th International Con-
ference on Language Resources and Evaluation,
Reykjavik, Iceland.

Ratcliffe, Robert R. (1998) The Broken Plural Prob-
lem in Arabic and Comparative Semitic: Allo-
morphy and Analogy in Non-concatenative Mor-
phology. Amsterdam studies in the theory and his-
tory of linguistic science. Series IV, Current issues
in linguistic theory ; v. 168. Amsterdam ; Philadel-
phia: J. Benjamins.

Roth, R. Rambow, O., Habash, N., Diab, M., and
Rudin, C. (2008) Arabic Morphological Tagging,
Diacritization, and Lemmatization Using Lexeme
Models and Feature Ranking. Proceedings of ACL-
08: HLT, Short Papers, pp. 117–120.

Shaalan, K., Samih, Y., Attia, M., Pecina, P., and van
Genabith, J. (2012) Arabic Word Generation and
Modelling for Spell Checking. Language Re-
sources and Evaluation (LREC). Istanbul, Turkey.
pp. 719–725.

Stolcke, A., Zheng, J., Wang, W., and Abrash, V.
(2011) SRILM at sixteen: Update and outlook. in
Proc. IEEE Automatic Speech Recognition and
Understanding Workshop. Waikoloa, Hawaii.

van Delden, Sebastian, David B. Bracewell, and Fer-
nando Gomez. (2004) Supervised and Unsuper-
vised Automatic Spelling Correction Algorithms.
In proceeding of Information Reuse and Integration
(IRI). Proceedings of the 2004 IEEE International
Conference on Web Services, pp. 530–535.

Wu, Jian-cheng, Hsun-wen Chiu, and Jason S. Chang.
(2013) Integrating Dictionary and Web N-grams
for Chinese Spell Checking. Computational Lin-
guistics and Chinese Language Processing. Vol.
18, No. 4, December 2013, pp. 17–30.

Zaghouani, Wajdi, Behrang Mohit, Nizar Habash,
Ossama Obeid, Nadi Tomeh, Alla Rozovskaya,
Noura Farra, Sarah Alkuhlani, and Kemal Oflazer.
2014. Large Scale Arabic Error Annotation: Guide-
lines and Framework. In Proceedings of the Ninth
International Conference on Language Resources
and Evaluation (LREC’14), Reykjavik, Iceland.

154

