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Abstract 

In this paper, we describe our Hybrid Ar-
abic Spelling and Punctuation Corrector 
(HASP). HASP was one of the systems 
participating in the QALB-2014 Shared 
Task on Arabic Error Correction. The 
system uses a CRF (Conditional Random 
Fields) classifier for correcting punctua-
tion errors, an open-source dictionary (or 
word list) for detecting errors and gener-
ating and filtering candidates, an n-gram 
language model for selecting the best 
candidates, and a set of deterministic 
rules for text normalization (such as re-
moving diacritics and kashida and con-
verting Hindi numbers into Arabic nu-
merals). We also experiment with word 
alignment for spelling correction at the 
character level and report some prelimi-
nary results. 

1 Introduction 

In this paper1 we describe our system for Arabic 
spelling error detection and correction, Hybrid 
Arabic Spelling and Punctuation Corrector 
(HASP). We participate with HASP in the 
QALB-2014 Shared Task on Arabic Error Cor-
rection (Mohit et al., 2014) as part of the Arabic 
Natural Language Processing Workshop (ANLP) 
taking place at EMNLP 2014.  
    The shared task data deals with “errors” in the 
general sense which comprise: a) punctuation 
errors; b) non-word errors; c) real-word spelling 
errors; d) grammatical errors; and, e) orthograph-
ical errors such as elongation (kashida) and 
speech effects such as character multiplication 
                                                
1 This work was supported by the Defense Advanced 
Research Projects Agency (DARPA) Contract No. 
HR0011-12-C-0014, BOLT program with subcontract 
from Raytheon BBN. 

for emphasis. HASP in its current stage only 
handles types (a), (b), and (e) errors. We assume 
that the various error types are too distinct to be 
treated with the same computational technique. 
Therefore, we treat each problem separately, and 
for each problem we select the approach that 
seems most efficient, and ultimately all compo-
nents are integrated in a single framework.  

1.1 Previous Work 

Detecting spelling errors in typing is one of the 
earliest NLP applications, and it has been re-
searched extensively over the years, particularly 
for English (Damerau, 1964; Church and Gale, 
1991; Kukich, 1992; Brill and Moore, 2000; Van 
Delden et al., 2004; Golding, 1995; Golding and 
Roth, 1996; Fossati and Di Eugenio, 2007; Islam 
in Inkpen, 2009; Han and Baldwin, 2011; Wu et 
al., 2013).  

The problem of Arabic spelling error correc-
tion has been investigated in a number of papers 
(Haddad and Yaseen, 2007; Alfaifi and Atwell, 
2012; Hassan et al., 2008; Shaalan et al., 2012; 
Attia et al., 2012; Alkanhal et al., 2012). 

 In our research, we address the spelling error 
detection and correction problem with a focus on 
non-word errors. Our work is different from pre-
vious work on Arabic in that we cover punctua-
tion errors as well. Furthermore, we fine-tune a 
Language Model (LM) disambiguator by adding 
probability scores for candidates using forward-
backward tracking, which yielded better results 
than the default Viterbi. We also develop a new 
and more efficient splitting algorithm for merged 
words. 

1.2 Arabic Morphology, Orthography and 
Punctuation 

Arabic has a rich and complex morphology as it 
applies both concatenative and non-
concatenative morphotactics (Ratcliffe, 1998; 
Beesley, 1998; Habash, 2010), yielding a wealth 
of morphemes that express various morpho-
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syntactic features, such as tense, person, number, 
gender, voice and mood.  
    Arabic has a large array of orthographic varia-
tions, leading to what is called ‘typographic er-
rors’ or ‘orthographic variations’ (Buckwalter, 
2004a), and sometimes referred to as sub-
standard spellings, or spelling soft errors. These 
errors are basically related to the possible over-
lap between orthographically similar letters in 
three categories: a) the various shapes of ham-
zahs (! A2, ! >, ! <, ! |, ! }, ء ', ! &); b) taa mar-
boutah and haa ! p, ! h); and c) yaa and alif 
maqsoura (! y, ! Y).  
      Ancient Arabic manuscripts were written in 
scriptura continua, meaning running words 
without punctuation marks. Punctuation marks 
were introduced to Arabic mainly through bor-
rowing from European languages via translation 
(Alqinai, 2013). Although punctuation marks in 
Arabic are gaining popularity and writers are 
becoming more aware of their importance, yet 
many writers still do not follow punctuation con-
ventions as strictly and consistently as English 
writers. For example, we investigated contempo-
raneous same sized tokenized (simple tokeniza-
tion with separation of punctuation) English and 
Modern Standard Arabic Gigaword edited 
newswire corpora, we found that 10% of the to-
kens in the English Gigaword corresponded to 
punctuation marks, compared to only 3% of the 
tokens in the Arabic counterpart.  
 

 Train. % Dev. % 
Word Count 925,643 -- 48,471 -- 
Total Errors 306,757 33.14 16,659 34.37 
Word errors 187,040 60.97 9,878 59.30 
Punc. errors 618,886 39.03 6,781 40.70 
Split 10,869 3.48 612 3.67 
Add_before 99,258 32.36 5,704 34.24 
Delete 6,778 2.21 338 2.03 
Edit 169,769 55.34 8,914 53.51 
Merge 18,267 5.95 994 5.97 
Add_after 20 0.01 2 0.01 
Move 427 0.14 13 0.08 

Table 1. Distribution Statistics on Error Types 

1.3 Data Analysis 

In our work, we use the QALB corpus (Zag-
houani et al. 2014), and the training and devel-
opment set provided in the QALB shared task 
(Mohit et. al 2014). The shared task addresses a 
large array of errors, and not just typical spelling 

                                                
2 In this paper, we use the Buckwalter Transliteration 
Scheme as described in www.qamus.com. 

errors. For instance, as Table 1 illustrates punc-
tuation errors make up to 40% of all the errors in 
the shared task. 

For further investigation, we annotated 1,100 
words from the development set for error types, 
and found that 85% of the word errors (excluding 
punctuation marks) are typical spelling errors (or 
non-word errors), while 15% are real-word er-
rors, or lexical ambiguities (that is, they are valid 
words outside of their context), and they range 
between dialectal words, grammatical errors, 
semantic errors, speech effects and elongation, 
examples shown in Table 2. 

 
Error Type Example Correction 
dialectal 
words 

bhAy !ب#ا  
‘by this’ [Syrian] 

bh*h !ب#ذ  
‘by this’ [MSA] 

grammatical 
errors 

kbyr كب"ر  
‘big.masc’ 

kbyrp !كب#ر  
‘big.fem’ 

semantic  
errors 

|tyh !"ت$  
‘come to him’ 

|typ ت"ة$  
‘coming’ 

speech  
effects 

"لرجا"""!  
 AlrjAAAAl ‘men’ 

&لرجا!  
AlrjAl ‘men’ 

elongation dm__A' مـاء%  
‘blood’ 

dmA' ماء$  
‘blood’ 

Table 2. Examples of real word errors  

2 Our Methodology 

Due to the complexity and variability of errors in 
the shared task, we treat each problem individu-
ally and use different approaches that prove to be 
most appropriate for each problem. We specifi-
cally address three subtypes of errors: ortho-
graphical errors; punctuation errors; and non-
word errors. 

2.1 Orthographical Errors 

There are many instances in the shared task’s 
data that can be treated using simple and straight-
forward conversion via regular expression re-
place rules. We estimate that these instances 
cover 10% of the non-punctuation errors in the 
development set. In HASP we use deterministic 
heuristic rules to normalize the text, including 
the following: 
1. Hindi numbers (!"#$٤٥٦()*) are converted 

into Arabic numerals [0-9] (occurs 495 in the 
training data times); 

2. Speech effects are removed. For example, 
 &لرجا! AlrjAAAAl ‘men’ is converted to "لرجا"""!
AlrjAl. As a general rule letters repeated three 
times or more are reduced to one letter (715 
times); 

3. Elongation or kashida is removed. For ex-
ample, مــاء%  dm__A' ‘blood’ is converted to 
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 ;dmA' (906 times) $ماء
4. Special character U+06CC, the Farsi yeh: ! 

is converted to U+0649, the visually similar 
Arabic alif maqsoura ! Y (293 times). 

2.2 Punctuation Errors 

Punctuation errors constitute 40% of the errors in 
the QALB Arabic data. It is worth noting that by 
comparison, punctuation errors only constituted 
4% of the English data in CoNLL 2013 Shared 
Task on English Grammatical Error Correction 
(Ng et al., 2013) and were not evaluated or han-
dled by any participant. In HASP, we focus on 6 
punctuation marks: comma, colon, semi-colon, 
exclamation mark, question mark and period. 

The ‘column’ file in the QALB shared task da-
ta comes preprocessed with the MADAMIRA 
morphological analyzer version 04092014-1.0-
beta (Pasha et al., 2014). The features that we 
utilize in our punctuation classification experi-
ments are all extracted from the ‘column’ file, 
and they are as follows: 
(1) The original word, that is the word as it ap-

pears in the text without any further pro-
cessing, (e.g., !"للتشا llt$Awr ‘for consulting’); 

(2) The tokenized word using the Penn Arabic 
Treebank (PATB) tokenization (e.g., !+ 
 ;(l+Alt$Awr 'لتشا"!

(3) Kulick POS tag (e.g., IN+DT+NN). 
(4) Buckwalter POS tag (e.g., PREP+DET+ 

NOUN+CASE_DEF_GN) as produced by 
MADAMIRA; 

(5) Classes to be predicted: colon_after, com-
ma_after, exclmark_after, period_after, 
qmark_after, semicolon_after and NA (when 
no punctuation marks are used); 
 

Window 
Size 

Recall Precision F-measure 

4 36.24 54.09 43.40 
5 37.95 59.61 46.37 
6 36.65 59.99 45.50 
7 34.50 59.53 43.68 

Table 3. Yamcha results on the development set 
 
     For classification, we experiment with Sup-
port Vector Machines (SVM) as implemented in 
Yamcha (Kudo and Matsumoto, 2003) and Con-
ditional Random Field (CRF++) classifiers  (Laf-
ferty et al. 2001). In our investigation, we vary 
the context window size from 4 to 8 and we use 
all 5 features listed for every word in the win-
dow. As Tables 3 and 4 show, we found that 
window size 5 gives the best f-score by both 
Yamcha and CRF. When we strip clitics from 

tokenized tag, reducing it to stems only, the per-
formance of the system improved. Overall CRF 
yields significantly higher results using the same 
experimental setup. We assume that the perfor-
mance advantage of CRF is a result of the way 
words in the context and their features are inter-
connected in a neat grid in the template file. 
 
# Window 

Size 
Recall Precision f-measure 

1 4 44.03 74.33 55.31 
2 5 44.50 75.49 55.99 
3 6 44.22 74.93 55.62 
4 7 43.81 75.09 55.34 
5 8 43.49 75.41 55.17 
6 8* 43.31 75.37 55.00 
Table 4. CRF results on the development set 
* with full tokens; other experiments use stems 
only, i.e., clitics are removed. 

2.3. Non Word Errors 

This type of errors comprises different subtypes: 
merges where two or more words are merged 
together; splits where a space is inserted within a 
single word; or misspelled words (which under-
went substitution, deletion, insertion or transpo-
sition) that should be corrected. We handle these 
problems as follows. 

2.3.1. Word Merges 

Merged words are when the space(s) between 
two or more words is deleted, such as  !ذ&&لنظا(
h*AAlnZAm ‘this system’, which should be  !ذ#
 h*A AlnZAm. They constitute 3.67% and &لنظا!
3.48% of the error types in the shared task’s de-
velopment and training data, respectively. Attia 
et al. (2012) used an algorithm for dealing with 
merged words in Arabic, that is, ! − 3, where l is 
the length of a word. For a 7-letter word, their 
algorithm generates 4 candidates as it allows on-
ly a single space to be inserted in a string. Their 
algorithm, however, is too restricted. By contrast 
Alkanhal et al. (2012) developed an algorithm 
with more generative power, that is 2!!!. Their 
algorithm, however, is in practice too general 
and leads to a huge fan out. For a 7-letter word, it 
generates 64 solutions. We develop a splitting 
algorithm by taking into account that the mini-
mum length of words in Arabic is two. Our mod-
ified algorithm is 2!!!, which creates an effec-
tive balance between comprehensiveness and 
compactness. For the 7-letter word, it generates 8 
candidates. However, from Table 5 on merged 
words and their gold splits, one would question 

150



the feasibility of producing more than two splits 
for any given string. Our splitting algorithm is 
evaluated in 2.3.3.1.c and compared to Attia et 
al.’s (2012) algorithm. 
 

 Development Training 
Total Count 631 11,054 

1 split 611 10,575 
2 splits 15 404 
3 splits 3 57 
4 splits 1 13 
5 splits 1 5 

Table 5. Merged words and their splits 

2.3.2. Word Splits 

Beside the problem of merged words, there is 
also the problem of split words, where one or 
more spaces are inserted within a word, such as 
 .(SmAm صما! correction is) ’Sm Am ‘valve صم "!
This error constitutes 6% of the shared task’s 
both training and development set. We found that 
the vast majority of instances of this type of error 
involve the clitic conjunction waw “and”, which 
should be represented as a word prefix. Among 
the 18,267 splits in the training data 15,548 of 
them involved the waw, corresponding to 
85.12%. Similarly among the 994 splits in the 
development data, 760 of them involved the waw 
(76.46%). 
    Therefore, we opted to handle this problem in 
our work in a partial and shallow manner using 
deterministic rules addressing specifically the 
following two phenomena:  
1. Separated conjunction morpheme waw ! w 

‘and’ is attached to the succeeding word (oc-
curs 15,915 times in the training data); 

2. Literal strings attached to numbers are sepa-
rated with space(s). For example, 
 dmA'2000$hydF” ‘blood of“ ”ش$#د!2000$ماء“
2000 martyrs’ is converted to “ش$#د! 2000 $ماء” 
“dmA' 2000 $hydF” (824 times). 

2.3.3. Misspelled Word Errors 

This is more akin to the typical spelling correc-
tion problem where a word has the wrong letters, 
rendering it a non-word. We address this prob-
lem using two approaches: Dictionary-LM Cor-
rection, and Alignment Based Correction.  

2.3.3.1. Dictionary-LM Correction 

Spelling error detection and correction mainly 
consists of three phases: a) error detection; b) 
candidate generation; and c) error correction, or 
best candidate selection.  

 

a. Error Detection 
For non-word spelling error detection and candi-
date generation we use AraComLex Extended, 
an open-source reference dictionary (or word 
list) of full-form words. The dictionary is devel-
oped by Attia et al. (2012) through an amalgama-
tion of various resources, such as a wordlist from 
the Arabic Gigaword corpus, wordlist generated 
from the Buckwalter morphological analyzer, 
and AraComLex (Attia et al., 2011), a finite-state 
morphological transducer. AraComLex Extended 
consists of 9.2M words and, as far as we know, 
is the largest wordlist for Arabic reported in the 
literature to date. 

We enhance the AraComLex Extended dic-
tionary by utilizing the annotated data in the 
shared task’s training data. We add 776 new val-
id words to the dictionary and remove 4,810 mis-
spelt words, leading to significant improvement 
in the dictionary’s ability to make decisions on 
words. Table 6 shows the dictionary’s perfor-
mance on the training and development set in the 
shared task as applied only to non-words and 
excluding grammatical, semantic and punctua-
tion errors. 

 

data set R P F 
Training 98.84 96.34 97.57 
Development 98.72 96.04 97.36 

Table 6. Results of dictionary error detection 
 
b. Candidate Generation 
For candidate generation we use Foma (Hulden, 
2009), a finite state compiler that is capable of 
producing candidates from a wordlist (compiled 
as an FST network) within a certain edit distance 
from an error word. Foma allows the ranking of 
candidates according to customizable transfor-
mation rules.  
 
# Error Type Count Ratio % 

1.  ! > typed as ! A 59,507 31.82 
2.  Insert 28.945 15.48 
3.  ! < typed as ! A 25.392 13.58 
4.  Delete 18.246 9.76 
5.  ! p typed as ! h 14.639 7.83 
6.  Split 11.419 6.11 
7.  ! y typed as ! Y 6.419 3.43 

Table 7. Error types in the training set 
 

We develop a re-ranker based on our observa-
tion of the error types in the shared task’s train-
ing data (as shown in Table 7) and examining the 
character transformations between the misspelt 
words and their gold corrections. Our statistics 
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shows that soft errors (or variants as explained in 
Section 1.2) account for more than 62% of all 
errors in the training data. 
 
c. Error Correction 
For error correction, namely selecting the best 
solution among the list of candidates, we use an 
n-gram language model (LM), as implemented in 
the SRILM package (Stolcke et al., 2011). We 
use the ‘disambig’ tool for selecting candidates 
from a map file where erroneous words are pro-
vided with a list of possible corrections. We also 
use the ‘ngram’ utility in post-processing for de-
ciding on whether a split-word solution has a 
better probability than a single word solution. 
Our bigram language model is trained on the Gi-
gaword Corpus 4th edition (Parker et al., 2009). 
    For the LM disambiguation we use the ‘–fb’ 
option (forward-backward tracking), and we pro-
vide candidates with probability scores. We gen-
erate these probability scores by converting the 
edit distance scores produced by the Foma FST 
re-ranker explained above. Both of the forward-
backward tracking and the probability scores in 
in tandem yield better results than the default 
values. We evaluate the performance of our sys-
tem against the gold standard using the Max-
Match (M2) method for evaluating grammatical 
error correction by Dahlmeier and Ng (2012). 
    The best f-score achieved in our system is ob-
tained when we combine the CRF punctuation 
classifier (merged with the original punctuations 
found in data), knowledge-based normalization 
(norm), dictionary-LM disambiguation and split-
1, as shown in Table 8. The option split-1 refers 
to using the splitting algorithm ! − 3  as ex-
plained in Section 2.3.1, while split-2 refers to 
using the splitting algorithm 2!!!. 
 

# Experiment R P F 
1 LM+split-1 33.32 73.71 45.89 

2 +CRF_punc+split-1 49.74 65.38 56.50 

3 + norm+split-1 38.81 69.08 49.70 

4 +CRF_punc+norm 
+split-1 54.79 67.65 60.55 

5 +CRF_punc+norm 
+orig_punc+split-1 53.18 73.15 61.59 

6 +CRF_punc+norm 
+orig_punc+split-2 53.13 73.01 61.50 

Table 8. LM correction with 3 candidates 
 
     In the QALB Shared Task evaluation, we 
submit two systems: System 1 is configuration 5 
in Table 8, and System 2 corresponds to configu-
ration 6, and the results on the test set are shown 

in Table 9. As Table 9 shows, the best scores are 
obtained by System 1, which is ranked 5th among 
the 9 systems participating in the shared task. 
 

# Experiment R P F 

1 System 1 52.98 75.47 62.25 

2 System 2 52.99 75.34 62.22 
Table 9. Final official results on the test set pro-
vided by the Shared Task 

2.3.3.2. Alignment-Based Correction 

We formatted the data for alignment using a 
window of 4 words: one word to each side 
(forming the contextual boundary) and two 
words in the middle. The two words in the mid-
dle are split into characters so that character 
transformations can be observed and learned by 
the aligner. The alignment tool we use is Giza++ 
(Och and Ney, 2003). Results are reported in Ta-
ble 10. 
!

# Experiment  R P F 

1 for all error types 36.05 45.13 37.99 

2 excluding punc 32.37 54.65 40.66 

3 2 + CRF_punc+norm 46.11 62.02 52.90 
Table 10. Results of character-based alignment 
!

Although these preliminary results from Align-
ment are significantly below results yielded from 
the Dictionary-LM approach, we believe that 
there are several potential improvements that 
need to be explored:  
• Using LM on the output of the alignment; 
• Determining the type of errors that the 

alignment is most successful at handling: 
punctuation, grammar, non-words, etc; 

• Parsing training data errors with the Diction-
ary-LM disambiguation and retraining, so in-
stead of training data consisting of errors and 
gold corrections, it will consist of corrected 
errors and gold corrections. 

3 Conclusion 

We have described our system HASP for the au-
tomatic correction of spelling and punctuation 
mistakes in Arabic. To our knowledge, this is the 
first system to handle punctuation errors. We 
utilize and improve on an open-source full-form 
dictionary, introduce better algorithm for hand-
ing merged word errors, tune the LM parameters, 
and combine the various components together, 
leading to cumulative improved results. 
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