Handling Unknown Words in Arabic FST Morphology

Khaled Shaalan and Mohammed Afttia
Faculty of Engineering & IT,
The British University in Dubai

khaled.shaalan@buid.ac.ae
mohammed.attialRbuid.ac.ae

Abstract

A morphological analyser only recognizes
words that it already knows in the lexical
database. It needs, however, a way of sensing
significant changes in the language in the form
of newly borrowed or coined words with high
frequency. We develop a finite-state
morphological guesser in a pipelined
methodology for extracting unknown words,
lemmatizing them, and giving them a priority
weight for inclusion in a lexicon. The
processing is performed on a large
contemporary corpus of 1,089,111,204 words
and passed through a machine-learning-based
annotation tool. Our method is tested on a
manually-annotated gold standard of 1,310
forms and yields good results despite the
complexity of the task. Our work shows the
usability of a highly non-deterministic finite
state guesser in a practical and complex
application.

1 Introduction

Due to the complex and semi-algorithmic nature of
the Arabic morphology, it has always been a
challenge for computational processing and
analysis (Kiraz, 2001; Beesley 2003; Shaalan et al.,
2012). A lexicon is an indispensable part of a
morphological analyser (Dichy and Farghaly,
2003; Attia, 2006; Buckwalter, 2004; Beesley,
2001), and the coverage of the lexical database is a
key factor in the coverage of the morphological
analyser. This is why an automatic method for
updating a lexical database is crucially important.

20

We present the first attempt, to the best of our
knowledge, to address lemmatization of Arabic
unknown words. The specific problem with
lemmatizing unknown words is that they cannot be
matched against a morphological lexicon. We
develop a rule-based finite-state morphological
guesser and use a machine learning disambiguator,
MADA (Roth et al., 2008), in a pipelined approach
to lemmatization.

This paper is structured as follows. The remainder
of the introduction reviews previous work on
Arabic unknown word extraction and
lemmatization, and explains the data used in our
experiments. Section 2 presents the methodology
followed in extracting and analysing unknown
words. Section 3 provides details on the
morphological guesser we have developed to help
deal with the problem. Section 4 shows and
discusses the testing and evaluation results, and
finally Section 5 gives the conclusion.

1.1 Previous Work

Lemmatization of Arabic words has been
addressed in (Roth et al., 2008; Dichy, 2001).
Lemmatization of unknown words has been
addressed for Slovene in (Erjavec and Dzerosk,
2004), for Hebrew in (Adler at al., 2008) and for
English, Finnish, Swedish and Swahili in (Lindén,
2008). Lemmatization means the normalization of
text data by reducing surface forms to their
canonical underlying representations, which, in
Arabic, means verbs in their perfective, indicative,
3rd person, masculine, singular forms, such as <&

Proceedings of the 10th International Workshop on Finite State Methods and Natural Language Processing, pages 20-24,
Donostia—San Sebastian, July 23-25, 2012. (©2012 Association for Computational Linguistics

$akara “to thank™; and nominals in their
nominative, singular, masculine forms, such as
<l TAlib “student”; and nominative plural for
pluralia tantum nouns (or nouns that appear only
in the plural form and are not derived from a
singular word), such as usb nAs “people”. To the
best of our knowledge, the study presented here is
the first to address lemmatization of Arabic
unknown words. The specific problem with
lemmatizing unknown words is that they cannot be
matched against a lexicon. In our method, we use a
machine learning disambiguator, develop a rule-
based finite-state morphological guesser, and
combine them in a pipelined process of
lemmatization. We test our method against a
manually created gold standard of 1,310 types
(unique forms) and show a significant
improvement over the baseline. Furthermore, we
develop an algorithm for weighting and prioritizing
new words for inclusion in a lexicon depending on
three factors: number of form variations of the
lemmas, cumulative frequency of the forms, and
POS tags.

1.2 Data Used

In our work we rely on a large-scale corpus of
1,089,111,204 words, consisting of 925,461,707
words from the Arabic Gigaword Fourth Edition
(Parker et al., 2009), and 163,649,497 words from
news articles collected from the Al-Jazeera web
site." In this corpus, unknown words appear at a
rate of between 2% of word tokens (when we
ignore possible spelling variants) and 9% of word
tokens (when possible spelling variants are
included).

2 Methodology

To deal with unknown words, or out-of-vocabulary
words (OOVs), we use a pipelined approach,
which predicts part-of-speech tags and morpho-
syntactic features before lemmatization. First, a
machine learning, context-sensitive tool is used.
This tool, MADA (Roth et al., 2008), performs
POS tagging and morpho-syntactic analysis and
disambiguation of words in context. MADA
internally uses the Standard Arabic Morphological
Analyser (SAMA) (Maamouri et al., 2010), an
updated version of Buckalter Arabic

!http://aljazeera.net/portal. Collected in January 2010.

21

Morphological Analyser (BAMA) (Buckwalter,
2004). Second, we develop a finite-state
morphological guesser that gives all possible
interpretations of a given word. The morphological
guesser first takes an Arabic form as a whole and
then strips off all possible affixes and clitics one by
one until all potential analyses are exhausted. As
the morphological guesser is highly non-
deterministic, all the interpretations are matched
against the morphological analysis of MADA that
receives the highest probabilistic scores. The
guesser’s analysis that bears the closest
resemblance (in terms of morphological features)
with the MADA analysis is selected.

These are the steps followed in extracting and

lemmatizing Arabic unknown words:

* A corpus of 1,089,111,204 is analysed with
MADA. The number of types for which
MADA could not find an analysis in SAMA is
2,116,180.

* These unknown types are spell checked by the
Microsoft Arabic spell checker using MS
Office 2010. Among the unknown types, the
number of types accepted as correctly spelt is
208,188.

* We then select types with frequency of 10 or
more. This leave us with 40,277 types.

* We randomly select 1,310 types and manually
annotate them with the gold lemma, the gold
POS and lexicographic preference for
inclusion in a dictionary.

* We use the full POS tags and morpho-syntactic
features produced by MADA.

* We use the finite-state morphological guesser
to produce all possible morphological inter-
pretations and corresponding lemmatizations.

* We compare the POS tags and morpho-
syntactic features in MADA output with the
output of the morphological guesser and
choose the one with the highest matching
score.

3 Morphological Guesser

We develop a morphological guesser for Arabic
that analyses unknown words with all possible
clitics, morpho-syntactic affixes and all relevant
alteration operations that include insertion,
assimilation, and deletion. Beesley and Karttunen

(2003) show how to create a basic guesser. The
core idea of a guesser is to assume that a stem is
composed of any arbitrary sequence of Arabic non-
numeric characters, and this stem can be prefixed
and/or suffixed with a predefined set of prefixes,
suffixes or clitics. The guesser marks clitic
boundaries and tries to return the stem to its
underlying representation, the lemma. Due to the
nondeterministic nature of the guesser, there will
be a large number of possible lemmas for each
form.

The XFST finite-state compiler (Beesley and
Karttunen, 2003) uses the “substitute defined”
command for creating the guesser. The XFST
commands in our guesser are stated as follows.

define PossNounStem
[[Alphabet]~{2,24}]
define PossVerbStem
[[Alphabet]"{2,6}]

"+Guess":0;

"+Guess":0;

This rule states that a possible noun stem is defined
as any sequence of Arabic non-numeric characters
of length between 2 and 24 characters. A possible
verb stem is between 2 and 6 characters. The
length is the only constraint applied to an Arabic
word stem. This word stem is surrounded by
prefixes, suffixes, proclitics and enclitics. Clitics
are considered as independent tokens and are
separated by the ‘@’ sign, while prefixes and
suffixes are considered as morpho-syntactic
features and are interpreted with tags preceded by
the ‘“+’ sign. Below we present the analysis of the
unknown noun Osisslls wa-Al-musaw~iquwna
“and-the-marketers”.

MADA output:

form:wAlmswqwn num:p gen:m per:na
case:n asp:na mod:navox:na pos:noun
prc0:Al det prcl:0 prc2:wa conj
prc3:0 enc0:0 stt:d

Finite-state guesser output:

Ofsdls t+adjisee stGuesstmasct+pltnom@

Ofsmalls t+adjo st swa) stGuesstsg@

Ofsddls +noundsel s+Guess+masc+pl+nom@

Ofsualls +nouny s sl stGuesstsg@,

Ofsaalls stconj@JHdefArt@+adjs s
+Guess+masc+pl+tnom@

Osfiswalls stconj@JHdefArt@+adjo s s

22

+Guesst+sg@

Ofsudlls stconj@JdHdefArt@-+rnound s
+Guess+masc+pl+nom@

OAsudlls stconj@JdHdefArt@-+rnoung s e
+Guess+sg@

Ofseally stconj@-+adjss<HGuess+masc
+pl+nom@

Ofsddls stconj@+tadjo s sadHGuesstsg@

Osfsualls stconj@-+nound sl+Guess+masc
+pl+nom@

Ofsadls stconj@+nouny B sedHGuesst+sg@,

For a list of 40,277 word types, the morphological
guesser gives an average of 12.6 possible
interpretations per word. This is highly non-
deterministic when compared to AraComLex
morphological analyser (Attia et al. 2011) which
has an average of 2.1 solutions per word. We also
note that 97% of the gold lemmas are found among
the finite-state guesser's choices.

4 Testing and Evaluation

To evaluate our methodology we create a manually
annotated gold standard test suite of randomly
selected surface form types. For these surface
forms, the gold lemma and part of speech are
manually given. Besides, the human annotator
gives a preference on whether or not to include the
entry in a dictionary. This feature helps to evaluate
our lemma weighting equation. The annotator
tends to include nouns, verbs and adjectives, and
only proper nouns that have a high frequency. The
size of the test suite is 1,310.

4.1

In the evaluation experiment we measure accuracy
calculated as the number of correct tags divided by
the count of all tags. The baseline is given by the
assumption that new words appear in their base
form, i.e., we do not need to lemmatize them. The
baseline accuracy is 45% as shown in Table 1. The
POS tagging baseline proposes the most frequent
tag (proper name) for all unknown words. In our
test data this stands at 45%. We notice that MADA
POS tagging accuracy is unexpectedly low (60%).
We use Voted POS Tagging, that is when a lemma
gets a different POS tag with a higher frequency,
the new tag replaces the old low frequency tag.

Evaluating Lemmatization

This method has improved the tagging results

significantly (69%).

| Accuracy
POS tagging
1 | POS Tagging baseline 45%
2 | MADA POS tagging 60%
3 | Voted POS Tagging 69%

Table 1. Evaluation of POS tagging

As for the lemmatization process itself, we notice
that our experiment in the pipelined lemmatization
approach gains a higher (54%) score than the
baseline (45%) as shown in Table 2. This score
significantly rises to 63% when the difference in
the definite article ‘Al’ is ignored. The testing
results indicate significant improvements over the
baseline.

Lemmatization
1 | Lemmas found among corpus forms 64%
2 | Lemmas found among FST guesser 97%
forms
3 | Lemma first-order baseline 45%
4 | Pipelined lemmatization (first-order 54%
decision) with strict definite article
matching
5 | Pipelined lemmatization (first-order 63%
decision) ignoring definite article
matching

Table 2. Evaluation of lemmatization

4.2 Evaluating Lemma Weighting

In our data we have 40,277 unknown token types.
After lemmatization they are reduced to 18,399
types (that is 54% reduction of the surface forms)
which are presumably ready for manual validation
before being included in a lexicon. This number is
still too big for manual inspection. In order to
facilitate human revision, we devise a weighting
algorithm for ranking so that the top » number of
words will include the most lexicographically
relevant words. We call surface forms that share
the same lemma ‘sister forms’, and we call the
lemma that they share the ‘mother lemma’. This
weighting algorithm is based on three criteria:
frequency of the sister forms, number of sister
forms, and a POS factor which penalizes proper
nouns (due to their disproportionate high
frequency). The parameters of the weighting

23

algorithm has been tuned through several rounds of
experimentation.

Word Weight = ((number of sister
forms having the same mother
lemma * 800) + cumulative sum of
frequencies of sister forms
having the same mother lemma) /
2 + POS factor

Good words In top In bottom
100 100

relying on Frequency 63 50

alone (baseline)

relying on number of sister | 87 28

forms * 800

relying on POS factor 58 30

using the combined criteria | 78 15

Table 3. Evaluation of lemma weighting and ranking

Table 3 shows the evaluation of the weighting
criteria. We notice that the combined criteria gives
the best balance between increasing the number of
good words in the top 100 words and reducing the
number of good words in the bottom 100 words.

5 Conclusion

We develop a methodology for automatically
extracting unknown words in Arabic and
lemmatizing them in order to relate multiple
surface forms to their base underlying
representation using a finite-state guesser and a
machine learning tool for disambiguation. We
develop a weighting mechanism for simulating a
human decision on whether or not to include the
new words in a general-domain lexical database.
We show the feasibility of a highly non-
deterministic finite state guesser in an essential and
practical application.

Out of a word list of 40,255 unknown words, we
create a lexicon of 18,399 lemmatized, POS-tagged
and weighted entries. We make our unknown word
lexicon available as a free open-source resource”.

Acknowledgments

This research is funded by the UAE National
Research Foundation (NRF) (Grant No.
0514/2011).

2 http://arabic-unknowns.sourceforge.net/

References

Adler, M., Goldberg, Y., Gabay, D. and Elhadad, M.
2008. Unsupervised Lexicon-Based Resolution of
Unknown Words for Full Morpholological Analysis.
In: Proceedings of Association for Computational
Linguistics (ACL), Columbus, Ohio.

Attia, M. 2006. An Ambiguity-Controlled Morpho-
logical Analyzer for Modern Standard Arabic
Modelling Finite State Networks. In: Challenges of
Arabic for NLP/MT Conference, The British
Computer Society, London, UK.

Attia, Mohammed, Pavel Pecina, Lamia Tounsi,
Antonio Toral, Josef van Genabith. 2011. An Open-
Source Finite State Morphological Transducer for
Modern Standard Arabic. International Workshop on
Finite State Methods and Natural Language
Processing (FSMNLP). Blois, France.

Beesley, K. R. 2001. Finite-State Morphological
Analysis and Generation of Arabic at Xerox
Research: Status and Plans in 2001. In: The ACL
2001 Workshop on Arabic Language Processing:
Status and Prospects, Toulouse, France.

Beesley, K. R., and Karttunen, L.. 2003. Finite State
Morphology: CSLI studies in computational
linguistics. Stanford, Calif.: Csli.

Buckwalter, T. 2004. Buckwalter Arabic Morphological
Analyzer (BAMA) Version 2.0. Linguistic Data
Consortium (LDC) catalogue number LDC2004L02,
ISBN1-58563-324-0

Dichy, J. 2001. On lemmatization in Arabic, A formal
definition of the Arabic entries of multilingual lexical
databases. ACL/EACL 2001 Workshop on Arabic
Language Processing: Status and Prospects.
Toulouse, France.

Dichy, J., and Farghaly, A. 2003. Roots & Patterns vs.
Stems plus Grammar-Lexis Specifications: on what
basis should a multilingual lexical database centred
on Arabic be built? In: The MT-Summit IX
workshop on Machine Translation for Semitic
Languages, New Orleans.

Erjavec, T., and DzZerosk, S. 2004. Machine Learning of
Morphosyntactic Structure: Lemmatizing Unknown
Slovene Words. Applied Artificial Intelligence,
18:17-41.

Kiraz, G. A. 2001. Computational Nonlinear
Morphology: With Emphasis on Semitic Languages.
Cambridge University Press.

Lindén, K. 2008. A Probabilistic Model for Guessing
Base Forms of New Words by Analogy. In CICling-
2008, 9th International Conference on Intelligent

24

Text Processing and Computational Linguistics,
Haifa, Israel, pp. 106-116.

Maamouri, M., Graff, D., Bouziri, B., Krouna, S., and
Kulick, S. 2010. LDC Standard Arabic
Morphological Analyzer (SAMA) v. 3.1. LDC
Catalog No. LDC2010L01. ISBN: 1-58563-555-3.

Parker, R., Graff, D., Chen, K., Kong, J., and Maeda, K.
2009. Arabic Gigaword Fourth Edition. LDC Catalog
No. LDC2009T30. ISBN: 1-58563-532-4.

Roth, R., Rambow, O., Habash, N., Diab, M., and
Rudin, C. 2008. Arabic Morphological Tagging,
Diacritization, and Lemmatization Using Lexeme
Models and Feature Ranking. In: Proceedings of
Association for Computational Linguistics (ACL),
Columbus, Ohio.

Shaalan, K., Magdy, M., Fahmy, A., Morphological
Analysis of Il-formed Arabic Verbs for Second
Language Learners, In Eds. McCarthy P., Boonthum,
C., Adpplied Natural Language Processing:
Identification, Investigation and Resolution, PP. 383-
397, I1GI Global, PA, USA, 2012.

Urdu — Roman Transliteration via Finite State Transducers

Tina Bogel
University of Konstanz
Konstanz, Germany
Tina.Boegel@uni-konstanz.de

Abstract

This paper introduces a two-way Urdu-
Roman transliterator based solely on a non-
probabilistic finite state transducer that solves
the encountered scriptural issues via a partic-
ular architectural design in combination with
a set of restrictions. In order to deal with the
enormous amount of overgenerations caused
by inherent properties of the Urdu script, the
transliterator depends on a set of phonologi-
cal and orthographic restrictions and a word
list; additionally, a default component is im-
plemented to allow for unknown entities to be
transliterated, thus ensuring a large degree of
flexibility in addition to robustness.

1 Introduction

This paper introduces a way of transliterating Urdu
and Roman via a non-probabilistic finite state trans-
ducer (TURF), thus allowing for easier machine
processing.! The TUREF transliterator was originally
designed for a grammar of Hindi/Urdu (Bogel et al.,
2009), based on the grammar development platform
XLE (Crouch et al., 2011). This grammar is writ-
ten in Roman script to serve as a bridge/pivot lan-
guage between the different scripts used by Urdu
and Hindi. It is in principle able to parse input from
both Hindi and Urdu and can generate output for
both of these language varieties. In order to achieve
this goal, transliterators converting the scripts of
Urdu and Hindi, respectively, into the common Ro-
man representation are of great importance.

'T would like to thank Tafseer Ahmed and Miriam Butt
for their help with the content of this paper. This research
was part of the Urdu ParGram project funded by the Deutsche
Forschungsgemeinschaft.

25

The TURF system presented in this paper is con-
cerned with the Urdu—Roman transliteration. It
deals with the Urdu-specific orthographic issues by
integrating certain restrictional components into the
finite state transducer to cut down on overgener-
ation, while at the same time employing an ar-
chitectural design that allows for a large degree
of flexibility. The transliterator is based solely
on a non-probabilistic finite state transducer im-
plemented with the Xerox finite state technology
(XFsT) (Beesley and Karttunen, 2003), a robust and
easy-to-use finite state tool.

This paper is organized as follows: In section 2,
one of the (many) orthographic issues of Urdu is in-
troduced. Section 3 contains a short review of ear-
lier approaches. Section 4 gives a brief introduction
into the transducer and the set of restrictions used to
cut down on overgeneration. Following this is an
account of the architectural design of the translit-
eration process (section 5). The last two sections
provide a first evaluation of the TURF system and a
final conclusion.

2 Urdu script issues

Urdu is an Indo-Aryan language spoken mainly in
Pakistan and India. It is written in a version of the
Persian alphabet and includes a substantial amount
of Persian and Arabic vocabulary. The direction of
the script is from right to left and the shapes of most
characters are context sensitive; i.e., depending on
the position within the word, a character assumes a
certain form.

Urdu has a set of diacritical marks which ap-
pear above or below a character defining a partic-
ular vowel, its absence or compound forms. In total,
there are 15 of these diacritics (Malik, 2006, 13);

Proceedings of the 10th International Workshop on Finite State Methods and Natural Language Processing, pages 25-29,
Donostia—San Sebastian, July 23-25, 2012. (©2012 Association for Computational Linguistics

the four most frequent ones are shown in Table 1 in

combination with the letter o ‘b’.

o +diacritic | Name | Roman transliteration
< Zabar ba
- Zer bi
Q Pesh bu
o Tashdid bb

Table 1: The four most frequently used diacritics

When transliterating from the Urdu script to another
script, these diacritics present a huge problem be-
cause in standard Urdu texts, the diacritics are rarely
used. Thus, for example, we generally are only con-

fronted with the letter o ‘b’ and have to guess at
the pronunciation that was intended. Take, e.g., the

following example, where the word LS kuttA ‘dog’
is to be transliterated. Without diacritics, the word
consists of three letters: &, t and A. If in the case of
transliteration, the system takes a guess at possible
short vowels and geminated consonants, the output
contains multiple possibilities ((1)).

(D fst[1]: up L=s
kuttA
Kuta,
kitth
k1tA
katth
kath

In addition to the correct transliteration kuttA, the
transliterator proposes five other possibilities for the
missing diacritics. These examples show that this
property of the Urdu script makes it extremely dif-
ficult for any transliterator to correctly transliterate
undiacriticized input without the help of word lists.

3 Earlier approaches

Earlier approaches to Urdu transliteration almost
always have been concerned with the process of
transliterating Urdu to Hindi or Hindi to Urdu (see,
e.g., Lehal and Saini (2010) (Hindi — Urdu), Ma-
lik et al. (2009) (Urdu — Hindi), Malik et al.
(2010) (Urdu — Roman) or Ahmed (2009) (Roman
— Urdu). An exception is Malik (2006), who ex-
plored the general idea of using finite state transduc-
ers and an intermediate/pivot language to deal with

26

the issues of the scripts of Urdu and Hindi.

All of these approaches are highly dependent on
word lists due to the properties of the Urdu script and
the problems arising with the use of diacritics. Most
systems dealing with undiacriticized input are faced
with low accuracy rates: The original system of Ma-
lik (2006), e.g., drops from approximately 80% to
50% accuracy (cf. Malik et al. (2009, 178)) — others
have higher accuracy rates at the cost of being uni-
directional.

While Malik et al. (2009) have claimed that the
non-probabilistic finite state model is not able to
handle the orthographic issues of Urdu in a satisfy-
ing way, this paper shows that there are possibilities
for allowing a high accuracy of interpretation, even
if the input text does not include diacritics.

4 The TURF Transliterator

The TUREF transliterator has been implemented as
a non-probabilistic finite state transducer compiled
with the lexc language (Lexicon Compiler), which is
explicitly designed to build finite state networks and
analyzers (Beesley and Karttunen, 2003, 203). The
resulting network is completely compatible with one
that was written with, e.g., regular expressions, but
has the advantage in that it is easily readable. The
transliteration scheme used here was developed by
Malik et al. (2010), following Glassman (1986).

As has been shown in section 1, Urdu transliter-
ation with simple character-to-character mapping is
not sufficient. A default integration of short vowels
and geminated consonants will, on the other hand,
cause significant overgeneration. In order to reduce
this overgeneration and to keep the transliterator as
efficient as possible, the current approach integrates
several layers of restrictions.

4.1 The word list

When dealing with Urdu transliteration it is not pos-
sible to not work with a word list in order to ex-
clude a large proportion of the overgenerated out-
put. In contrast to other approaches, which depend
on Hindi or Urdu wordlists, TURF works with a Ro-
man wordlist. This wordlist is derived from an XFST
finite state morphology (Bogel et al., 2007) indepen-
dently created as part of the Urdu ParGram devel-
opment effort for the Roman intermediate language
(Bogel et al., 2009).

4.2 Regular expression filters

The regular expression filters are based on knowl-
edge about the phonotactics of the language and are
a powerful tool for reducing the number of possi-
bilities proposed by the transliterator. As a concrete
example, consider the filter in (2).

@) [~[yAfaliju]]]

In Urdu a combination of [y A short vowel | is not
allowed (~). A filter like in (2) can thus be used to
disallow any generations that match this sequence.

4.3 Flag diacritics

The XFST software also provides the user with a
method to store ‘memory’ within a finite state net-
work (cf. Beesley and Karttunen (2003, 339)).
These so-called flag diacritics enable the user to en-
force desired constraints within a network, keeping
the transducers relatively small and simple by re-
moving illegal paths and thus reducing the number
of possible analyses.

5 The overall TURF architecture

However, the finite state transducer should also be
able to deal with unknown items; thus, the con-
straints on transliteration should not be too restric-
tive, but should allow for a default transliteration as
well. Word lists in general have the drawback that a
matching of a finite state transducer output against a
word list will delete any entities not on the word list.
This means that a methodology needs to be found
to deal with unknown but legitimate words with-
out involving any further (non-finite state) software.
Figure 1 shows the general architecture to achieve
this goal. For illustrative purposes two words are

transliterated: LS kitAb ‘book’ and .5, which
transliterates to an unknown word k#, potentially
having the surface forms kut, kat or kit.

5.1 Step 1: Transliteration Part 1

The finite state transducer itself consists of a net-
work containing the Roman—Urdu character map-
ping with the possible paths regulated via flag dia-
critics. Apart from these regular mappings, the net-
work also contains a default Urdu and a default Ro-
man component where the respective characters are

27

simply matched against themselves (e.g. kik, rir).
On top of this network, the regular expression filters
provide further restrictions for the output form.

Transliterator Default Urdu
1| (Urdu - Roman)
Default Roman
kithAib l l

kitAub Uscript+ € U.'scriptﬂ.".s
k1thb)

kotthab kot

kotthib kit

kattAub kut

2 Roman Wordlist:

| Filter: [Uscript+ | +match] |

kitAb+match U.-script+£.-5

Uscript+ |

3 Urdu Wordlist: Delete Uscript+

| Filter: Delete tags |

' !

kitAb X

Default Urdu
Filter: no +Uscript

Transliterator
(Urdu - Roman)

!

kat
kit
kut

d

Figure 1: Transliteration of S and LS

Default Roman

kitAb

The Urdu script default 1-1 mappings are marked
with a special identification tag ([+Uscript]) for
later processing purposes. Thus, an Urdu script
word will not only be transliterated into the corre-
sponding Roman script, but will also be ‘transliter-
ated’ into itself plus an identificational tag.

The output of the basic transliterator shows part
of the vast overgeneration caused by the underspec-
ified nature of the script, even though the restricting
filters and flags are compiled into this component.

5.2 Step 2: Word list matching and tag deletion

In step 2, the output is matched against a Roman
word list. In case there is a match, the respective
word is tagged [+match]. After this process, a

filter is applied, erasing all output forms that contain
neither a [+match] nora [Uscript+] tag. This

way we are left with two choices for the word S~
— one transliterated ‘matched’ form and one default
Urdu form — while the word S"is left with only the
default Urdu form.

5.3 Step 3: Distinguishing unknown and
overgenerated entities

The Urdu word list applied in step 3 is a translitera-
tion of the original Roman word list (4.1), which was
transliterated via the TURF system. Thus, the Urdu
word list is a mirror image of the Roman word list.
During this step, the Urdu script words are matched
against the Urdu word list, this time deleting all the
words that find a match. As was to be expected from
matching against a mirror word list of the original
Roman word list, all of the words that found a match
in the Roman word list will also find a match in the
Urdu word list, while all unknown entities fail to
match. As a result, any Urdu script version of an al-
ready correctly transliterated word is deleted, while
the Urdu script unknown entity is kept for further
processing — the system has now effectively sepa-
rated known from unknown entities.

In a further step, the tags of the remaining entities
are deleted, which leaves us with the correct translit-
eration of the known word kitAb and the unknown
Urdu script word &S~

5.4 Step 4: Transliteration Part 2

The remaining words are once again sent into the
finite state transducer of step 1. The Roman translit-
eration kifAb passes unhindered through the Default
Roman part. The Urdu word on the other hand is
transliterated to all possible forms (in this case three)
within the range of the restrictions applied by flags
and filters.

5.5 Step 5: Final adjustments

Up to now, the transliterator is only applicable to
single words. With a simple (recursive) regular ex-
pression it can be designed to apply to larger strings
containing more than one word.

The ouput can then be easily composed with a
standard tokenizer (e.g. Kaplan (2005)) to enable
smooth machine processing.

28

6 Evaluation

A first evaluation of the TURF transliterator with
unseen texts resulted in an accuracy of 86%, if the
input was not diacriticized. The accuracy rate for
undiacriticized text always depends on the size of
the word list. The word list used in this application
is currently being extended from formerly 20.000 to
40.000 words; thus, a significant improvement of the
accuracy rate can be expected within the next few
months.

If the optional inclusion of short vowels is re-
moved from the network, the accuracy rate for di-
acriticized input is close to 97%.

When transliterating from Roman to Urdu, the ac-
curacy rate is close to a 100%, iff the Roman script is
written according to the transliteration scheme pro-
posed by Malik et al. (2010).

Transliteration U—R U—R R—U
Input diacritics no diacritics

Diacritics opt. / compuls. optional

Accuracy 86% | 97% 86% ~ 100%

Table 2: Accuracy rates of the TURF transliterator

7 Conclusion

This paper has introduced a finite state transducer
for Urdu <+ Roman transliteration. Furthermore,
this paper has shown that it is possible for appli-
cations based only on non-probabilistic finite state
technology to return output with a high state-of-the-
art accuracy rate; as a consequence, the application
profits from the inherently fast and small nature of
finite state transducers.

While the transliteration from Roman to Urdu is
basically a simple character to character mapping,
the transliteration from Urdu to Roman causes a
substantial amount of overgeneration due to the
underspecified nature of the Urdu script. This was
solved by applying different layers of restrictions.

The specific architectural design enables TURF to
distinguish between unknown-to-the-word-list and
overgenerated items; thus, when matched against
a word list, unknown items are not deleted along
with the overgenerated items, but are transliterated
along with the known items. As a consequence,
a transliteration is always given, resulting in an
efficient, highly accurate and robust system.

References

Tafseer Ahmed. 2009. Roman to Urdu transliteration
using wordlist. In Proceedings of the Conference on
Language and Technology 2009 (CLT09), CRULP, La-
hore.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Publications, Stanford, CA.

Tina Bogel, Miriam Butt, Annette Hautli, and Sebastian
Sulger. 2007. Developing a finite-state morpholog-
ical analyzer for Urdu and Hindi. In T. Hanneforth
und K. M. Wiirzner, editor, Proceedings of the Sixth
International Workshop on Finite-State Methods and
Natural Language Processing, pages 86-96, Potsdam.
Potsdam University Press.

Tina Bogel, Miriam Butt, Annette Hautli, and Sebas-
tian Sulger. 2009. Urdu and the modular architec-
ture of ParGram. In Proceedings of the Conference
on Language and Technology 2009 (CLT09), CRULP,
Lahore.

Dick Crouch, Mary Dalrymple, Ron Kaplan,
Tracy King, John Maxwell, and Paula New-
man. 2011. XLE Documentation. Palo
Alto Research Center, Palo Alto, CA. URL:
http://www?2.parc.com/isl/groups/nltt/xle/doc/xle_toc.html.

Eugene H. Glassman. 1986. Spoken Urdu. Nirali
Kitaben Publishing House, Lahore, 6 edition.

Ronald M. Kaplan. 2005. A method for tokenizing text.
In Festschrift in Honor of Kimmo Koskenniemi’s 60th
anniversary. CSLI Publications, Stanford, CA.

Gurpreet S. Lehal and Tejinder S. Saini. 2010. A
Hindi to Urdu transliteration system. In Proceedings
of ICON-2010: 8th International Conference on Nat-
ural Language Processing, Kharagpur.

Abbas Malik, Laurent Besacier, Christian Boitet, and
Pushpak Bhattacharyya. 2009. A hybrid model for
Urdu Hindi transliteration. In Proceedings of the 2009
Named Entities Workshop, ACL-IJCNLP, pages 177—
185, Suntec, Singapore.

Muhammad Kamran Malik, Tafseer Ahmed, Sebastian
Sulger, Tina Bogel, Atif Gulzar, Ghulam Raza, Sar-
mad Hussain, and Miriam Butt. 2010. Transliter-
ating Urdu for a Broad-Coverage Urdu/Hindi LFG
Grammar. In Proceedings of the Seventh Conference
on International Language Resources and Evaluation
(LREC 2010). European Language Resources Associ-
ation (ELRA).

Abbas Malik. 2006. Hindi Urdu machine transliteration
system. Master’s thesis, University of Paris.

29

